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CHAPTER  2 

LITERATURE REVIEW 

Mathematical modeling of tumour growth 

2.1    The early models of tumour growth.         

                                     

          The earliest mathematical studies of solid tumours focused purely on growth 

dynamics when Mayneord (1932) developed a mathematical model which studied the 

effect of different distributions of actively dividing cells. This model illustrated that when 

the entire tissue volume was growing exponentially with the growth rate gradually 

reducing as the region of active growth was progressively restricted to an outer shell of 

tissue of decreasing thickness, ultimately arriving at a linear growth rate. 

 

         Hill (1928) set the scene for many later mathematical models of solid tumours. He 

used mathematical approaches to study a number of important physiological processes 

such as the diffusion of oxygen into a solid where it is consumed by metabolic processes, 

the outward diffusion of lactic acid from a solid which produces it by metabolic processes 

and the diffusion of oxygen away from a blood vessel into a region with an oxygen debt. 

 

         Thomlinson and Gray (1955) proposed a mathematical model of the diffusion and 

consumption of oxygen to supplement an experimental investigation of some types of 

bronchial carcinomata which grow in solid rods which are devoid of capillaries and 

which comprise cells nourished by diffusion of metabolites inwards from the 
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immediately surrounding stroma. Large tumours of this kind often consist of necrotic 

centres surrounded by ‘intact tumour cells which appear as rings’.  

 

         Burton (1966) developed a diffusion model which examined both the distribution of 

oxygen in a spherical tumour where the blood supply is completely confined to the 

surface and the resulting relative radius of the central zone to the total radius, which was 

then used to explain how the growth curve cold fit a Gompertzian expression.  

 

      

2.2 Early models of avascular tumours and multicell spheroids                                                 

         The emerging interest in both the avascular nodules as well as the multicell 

spheroid model encouraged various new approaches to the mathematical modeling of 

solid tumours.  

 

         Greenspan (1972) extended the models by Burton (1966) and Thomlinson and Gray 

(1955) by introducing a surface tension among the living cancer cells in order to maintain 

a compact, solid mass. He made an assumption that necrotic cellular debris continually 

disintegrates into simpler chemical compounds that are freely permeable through cell 

membranes. In this way, the tissue volume loss due to necrosis would be replaced by the 

inward motion of cells from the outer region as a result of the forces of adhesion and 

surface tension, thereby explaining the existence of a steady-state tumour size.  

Greenspan also assumed that a chemical is produced somewhere within the tumour which 

inhibits the mitosis of cancer cells without causing their death once the concentration 
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reaches a critical level. These effects were combined in an integro-differential equation 

for the evolution of the tumour radius, and a reaction-diffusion equation for both the 

concentration of nutrient and that of inhibitor. 

 

         Two different possibilities were then considered separately. While the first model 

assumed that the chemical inhibitor was a result of inadequate nutrient supply and a 

product of necrosis, the second model assumed that the inhibitor was produced purely by 

the metabolic processes of living cells, with no katabolites associated with necrosis. 

Qualitatively, the two models predicted some overall similarities in the development of  

the spheroid, with three distinct growth phases: an initial exponential growth phase, 

followed by some degree of retardation, culminating in a final phase where retardation by 

both mitotic inhibition and cell death ultimately gave rise to dormancy. Nevertheless, 

each of the two models predicted a distinctly different growth pattern prior to arriving at 

a steady state.  

 

         Glass (1973) developed a one dimensional mathematical model which predicted 

patterns of mitotic activity in a growing tumour. Mitotic inhibitors called chalones were 

assumed to be produced uniformly throughout the tissue, which then diffused beyond the 

tissue boundaries and decayed. The regulation of growth by a ‘switch mechanism’, was 

introduced where mitosis occurred below a critical value of chalone concentration, and 

was completely above this value. He considered, no volume loss mechanism such as 

necrosis , and stable tissue growth was assumed to occur when the chalone concentration 

was less than the mitotic threshold throughout the tissue. 
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        This is contrast to Greenspan’s (1972). This model has been extended to two and 

three dimensions, by Shymko and Glass (1976) attempting to determine the effect of 

different geometries on the pattern and growth stability. Greenspan (1976) also consider 

the stability to asymmetric perturbations of the spherical shape of an equilibrium-sized 

tumour. This formulation considered a thin proliferating layer near the surface and a 

large, central necrotic core, where the birth or death of cells produces internal pressure 

differentials which cause the motion of cellular material.  

 

          Deakin (1975) then extended the formulations of Burton (1966) and Greenspan 

(1972, 1974) to incorporate an oxygen consumption which was propotional to oxygen 

concentration within critical limits. Beyond an upper critical value of  oxygen 

concentration, oxygen consumption was considered a constant, while necrosis occurred at 

a lower critical value below which no oxygen would be consumed. 

 

          McElwain and Ponzo (1977) developed a model which investigated the effect of 

non-uniformity of oxygen consumption. This is a model on a tumour’s growth rate 

produced three distinct phases in the tumour’s development which is different with 

Deakin (1975) which restricted to the non-uniformity of oxygen consumption on the 

variable rim thickness. In the first phase, oxygen concentration is above the upper critical 

value everywhere, so that all cells consume oxygen at a uniform rate, giving rise to 

exponential growth. While in the second phase, the growth rate reduces as oxygen 

concentration reduces in the central region, with an associated decrease in the effective 
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proliferation rate and a slowing in the overall growth. The tumour reaches a viable 

dormant state I the final phase with an outer proliferating layer, an intermediate layer 

where overall proliferation is reduced and an inner necrotic core.  

 

          McElwain and Morris (1978) extended the previous models to include a constant 

cell loss rate in the entire viable region, with the consequence that a dormant state could 

be reached with or without a central necrotic region. In considering apoptosis as a cell 

loss mechanism, this model is an antecedent to much of the subsequent mathematical 

literature relating to tumour development. 

 

         It is important to note that ‘since random fluctuations are fundamental to the 

population processes, the probabilistic or stochastic of evolving populations is essential 

whenever one considers populations whose size may assume small values. As a result, 

various stochastic models of solid tumour growth also developed (Wette et al. 1974). The 

behaviour of small populations is predominantly statistical, and the random component of 

the growth kinetics of a population, such as exhibited in the spontaneous extinction in 

even supercritical growth, may indeed become more important than the average 

behaviour.   
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2.3   Early models of tumour invasion and metastasis     

                                            

         Metastasis, the spread of cancer to distant sites in the body, is in fact what makes 

cancer so lethal Ruoslahti (1996). For that reason, metastasis and the invasion of normal 

tissue by cancer cells are the hallmarks of malignancy.  

 

         Saidel et al. (1976) proposed a compartmental model of the haematogenous 

metastatic process from a solid tumour. In this model, five sub-populations were 

considered-tumour cells, vascular surfaces, invading tumour cells on the inner vessel 

surface, viable tumour cells arrested in pulmonary vessels and pulmonary metastatic foci. 

They used the assumption of a Michaelis-Menten form for the processes of tumour cell 

proliferation and vessel surface formation.  

 

         Liotta et al. (1976) proposed a stochastic model of metastasis formation to 

complement this model in order to distinguish amongst tumour clumps and metastatic 

foci. Simulation of the dynamics of the metastatic process was then accomplished by 

combining the numerical solution of the deterministic model given by Saidel et al. (1976) 

with the analytical stochastic model. This gives good agreement with experimental data 

for the mean and variance of macroscopic metastatic foci. 

 

         Saidel et al. (1976) work was also extended by Liotta et al. (1974) in a diffusion 

model which coupled diffusion equations with source and sink terms were proposed in 

spherical polar coordinates (with spherical symmetry) to describe the density of both the 



12 

 

tumour cells as well as the surface area of tumour vessels as functions of time and radial 

position.  

 

2.4  Models of tumour growth in the 1980s 

 

          Adam (1986) had noted the important experimental findings on the role of growth 

inhibitors in tumour development (Bullough, 1965; Bullough and Deol, 1971; Weiss, 

2000). While Glass (1973) had assumed that regulation of growth occurred by a 

discontinuous switch mechanism for the control of mitotic activity with a spatially 

uniform production of inhibitor, Adam (1986) maintained that a spatially-dependent 

mitotic control function best reflected experimental observations and warranted further 

theoretical study.  

       

          This new model demonstrated the sensitivity of the growth of the tissue to a non-

uniform source of inhibitor. Adam soon extended this simple model to investigate the 

roles of both non-uniform mitotic inhibition and geometry on the stability of growth 

(Adam, 1987a). The model prediction was compared with the experimental results of 

Adam (1987b). Adam cautiously noted that although the combination of spherical 

geometry and a certain spatial variation in inhibitor production gave rise to an excellent 

fit with the published data. This fit did not prove the necessity of spatial variations in 

mitotic control to explain such observations. It is particularly noteworthy that the models 

proposed by Adam (1986, 1987a,b) did not incorporate a volume loss mechanism such as 
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necrosis, so that stability could only occur by complete growth inhibition throughout the 

tissue—a somewhat incongruous notion in the context of cancer. 

          

          Clearly, the effects of a necrotic core would be an important consideration on the 

extension of these models. It is essential to recognize that the necrotic core was simply 

incorporated as a source of growth inhibition (Adam and Maggelakis, 1989), rather than 

representing a mechanism for volume loss.  

          

           Landry et al. (1982) considered the geometric and physical characteristics of 

multicellular spheroids in a mathematical model which attempted to relate growth rate.  

While the model did provide an explanation for the linear growth of multicellular 

spheroids,  it predicted an infinite linear expansion and was unable to explain the growth 

saturation of large spheroids.  

         

           On the other hand, Maggelakis and Adam (1990) studied a non-uniform growth 

inhibition in a model which examined the growth rate of  a spherically-symmetric 

prevascular carcinoma when both nutrient consumption and inhibitor production were 

spatially non-uniform. An additional parameter was introduced into the model to account 

for the effects of the inhibitor production on nutrient consumption rate. This formulation 

bestowed the potential to adopt a four-layered structure. In the first phase, all cells could 

obtain sufficient nutrients, allowing mitosis to proceed normally throughout the tissue. 

The second phase commenced when nutrient concentration reduced sufficiently in the 

central region to cause mitotis to decrease there, thereby beginning to slow the overall 
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growth of the spheroid. A two-layered structure prevailed during this phase, with an outer 

layer proliferating normally, and an inner layer in which proliferation was reduced. The 

third phase was a further period of retarded growth where the structure comprised an 

additional layer of necrosis at the centre, which constituted a volume loss mechanism. 

While this could give rise to dormancy, further growth ensued  if the retardation by 

necrotic volume loss and consumption decrease was insufficient, giving rise to a fourth 

phase which could be characterized by either the aforementioned three-layered structure, 

or a four-layered  structure comprising an additional quiescent layer. 

          

          Various models relating to oxygenation and radio-sensitivity of solid tumours were 

developed Liapis et al. (1982), Arve and Liapis (1988), King et al. (1986a,b) and Schultz 

and King (1987). In addition, some models of drug transport in tumours given by Jain 

and Wei (1977) and Swan (1981) were advanced. 

      

2.5 New approaches to the study of tumour invasion and metastasis 

 

        Orme and Chaplain (1996) continued the study of tumour growth and 

vascularisation assumed that tumour cells react to the presence of blood vessels in a 

similar manner to that of ‘taxis’, so that tumour cells move up a gradient of capillary 

vessels. They made an assumption that a necrotic core develop as a consequence of the 

overcrowding of tumour cells and eventual collapse of blood vessels. Moreover, 

interactions between tumour cells and capillary vessels were considered in more detail, 

yielding a somewhat more complicated partial differential equation model.  
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         Perumpaini and Norbury (1999) developed a mathematical model of malignant 

invasion brought about by a combination of proteolysis and haptoxis. The spatial 

dynamics of invasive cells were modeled by a directed cell movement  up an extracellular 

gradient, while neglecting random cell motility. The proliferation of the tumour cells was 

incorporated using the logistic growth equation, while a simple passive degradation 

described the dynamics of the extracellular matrix. In addition, while the production of 

protease was assumed to depend on the local concentrations of both tumour cells and 

extracellular matrix, its decay was assumed to be linear with a specified half-life. 

          

          Both theoretical and experimental methods were combined in a publication by 

Perumpaini and Byrne (1999). Gatenby (1991, 1995a,b, 1996a,b), Gatenby and 

Gawlinski (1996) and Webb et al. (1999) advanced works on tumour invasion by 

investigating alternative mechanistic bases for experimentally-observed behaviour. 

Gatenby (1991, 1995a, 1996b) used methods from population biology in treating tumour 

cells as an invading species. 

          

          Chaplain and Sleeman (1993)  that the degree of tumour differentiation maybe 

characterized mathematically by a strain energy function, thereby linking the potential for 

invasion and metastasis to the constitutive nature of the tissue. This approach afforded an 

emphasis on the activity of the layer of proliferating cells at the tumour periphery, which 

may invade the surrounding host tissue.  
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           Sleeman and Nimmo (1998) extended the model of fluid transport in vascularized 

by introducing a pressure – curvature condition to the tumour periphery. A perturbation 

analysis was conducted to show how small deviations from spherical symmetry could 

enhance asymmetric growth, enabling the tumour to invade and metastasize. 

 

2.6 Further models of avascular tumours and multicell spheroids 

 

         Chaplain et al. (1994) relating to the loss of coupling between tumour cells and 

proposed that the diffusion of growth inhibitory factors between cells may not be 

constant. This new model introduced a non-linear, spatially-dependent diffusion 

coefficient to describe the diffusion of a growth inhibitory factor which is in contrast to 

earlier models (Adam, 1986, 1987a,b; Adam and Maggelakis, 1989) which incorporated 

only non-linear production of mitotic inhibitors. In addition, both uniform inhibitor 

production, as well as the non-linear production term proposed by Britton and Chaplain 

(1992) and Chaplain and Britton (1993) were considered. The model demonstrated that 

the introduction of a non-linear, spatially-dependent diffusion coefficient was sufficient 

to produce  a profile of growth inhibitor concentration. Furthermore, since the 

combination of non-linear diffusion and a non-linear production term was also able to 

reflect experimental observations, it is not possible to distinguish between the effects of 

non-linear diffusion and non-linear production of inhibitors from a mathematical point of 

view. 
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            The role of apoptosis (that is, programmed cell death) in tumour growth has also 

spawned several novel mathematical models. New antitumour strategies which focus on 

apoptosis are emerging (Hickman et al., 1994). Bryne and Chaplain (1996a) considered 

both apoptosis and necrosis as distinct cell loss mechanisms in a model which studied the 

effects of nutrients and inhibitors on the existence and stability of time-independent 

solutions for a multicell spheroid. 

          

           Byrne (1997)  developed a mathematical model which studied the effect of time 

delays on the dynamics of avascular tumour growth because of these time delays, the 

tumour’s evolution depended not only on its composition at a particular instant, but also 

on its composition at some earlier time. Two types of time delay in the net cell 

proliferation rate were considered where the first one was regulated by the cell itself 

(autocrine control) and represented the time taken for the cells to undergo mitosis. The 

second type of delay, was influenced by neighbouring cells (paracrine control) and 

represented the time for cells to upregulate the production rate of a particular growth 

factor and for the growth factor to modify the rate of apoptotic cell loss.  

          

           Byrne and Gourley (1997) study the relationship between cell proliferation and 

apoptosis through a consideration of  the internal production of growth factors. Here, a 

growth factor was first produced in an active form during cell proliferation, and later 

activated upon binding to a tumour cell. Growth factors which enhanced apoptosis did 

not alter the qualitative behaviour of the tumour, while growth factors which suppressed 

apoptosis could induce asymmetric pulsing of the tumour radius. 
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         Ward and King (1997, 1999, 2000) have made a significant contribution on 

avascular tumour growth. There are models are quite distinct from previous one since 

they do not appeal to the theory of porous media and theory of mixtures. Ward and King 

(1997) presented a system of non-linear partial differential equations as a continuum 

model which assumed cells to be either living or dead (depending on the concentration of 

a generic nutrient). The aim is to make predictions about tumour heterogeneity and 

growth, without making any prior assumptions about the spatial structure of the tumour. 

A velocity field developed as a consequence of local volume changes due to cell 

proliferation and cell death, where in contrast to previous models, dying cells contracted 

at a rate which depends on the availability of nutrients. The model used of a generalized 

Michaelis-Menten form for the rate constants for cell proliferation and death. This 

formulation predicted an early exponential growth phase followed by linear growth, 

corresponding to experimental observations in the intermediate phase of spheroid growth. 

An additional interesting prediction peculiar to this modelling framework was the 

existence of two phases of growth retardation following the exponential growth. The first 

of these phases was a consequence of nutrient diffusion limitations, with the second 

retardation coinciding with the formation of a necrotic region. In addition, well-defined 

tumour regions were predicted with a distinct viable rim and a necrotic core.  

          

           Ward and King (1999a) extended the model by incorporating a necrotic volume 

loss in order to consider growth saturation. However, they considered only necrotic cell 

death and proposed two distinct mechanisms for the removal of the necrotic debris: 

leakage and consumption by neighbouring cells. The latter mechanism was postulated on 
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the basis of experimental observations of cells consuming neighbouring dead cells 

(having undergone apoptosis), as reported by Kerr et al. (1987). Depending on the choice 

of parameter regime, this measure enabled the long-time solutions to exhibit either 

traveling wave or growth saturation. 

          

           Byrne and Chaplain (1997), proposed a model which comprised some very novel 

approaches and constituted a quite general formulation for the growth of multicell 

spheroids. A key aspect of the model was the assumption that the nutrient concentration 

satisfied the Gibbs-Thompson relation on the tumour boundary. This is a relation which 

states that “the nutrient concentration at a point on the tumour boundary is less than the 

external concentration by a factor which is proportional to the local curvature there” . 

          

          Sherrat and Chaplain (2001) have also developed a novel avascular tumours model 

by considering continuum densities of proliferating, quiescent and necrotic cells, together 

with a generic nutrient or growth factor. This model predicted the development of the 

characteristic layered structure of a proliferating rim, an underlying quiescent layer and a 

necrotic core without making any priori assumptions about the spatial structure of the 

tumour. The model also incorporated cell movement. An additional novel feature of the 

model was that the thin, approximately disc-shaped tumour could be supplied with 

nutrients from underlying tissue, a situation which would arise in the context of a tumour 

growing within an epithelium. The numerical solutions and accompanying analysis 

illustrated that tumour structure could be altered significantly by this aspect. 
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         Chaplain (1996) discusses the various stages of tumour growth (avascular, vascular, 

angiogenesis and metastasis) by presenting a variety of mathematical ideas  (Chaplain 

and co-workers (1993; 1994) presented a unified treatment of the entire process of 

tumour development. 

          

          In a similar manner, a general discussion of a number of modeling frameworks, 

including lattice schemes and continuum models comprising either a single phase or 

multiple phases for the study of the tumour growth at the macroscopic level. De Angelis 

and Preziosi (2000), Anderson and Chaplain (1998) and Anderson et al. (2000) gave 

summaries of various aspects of the model for an overview of the subjects of avascular 

tumour growth, angiogenesis, invasion and tumour-host interactions. De Angelis and 

Preziosi (2000) model is particularly noteworthy since it describes the continuous 

evolution of a tumour from the avascular stage to the vascular stage via the process of 

angiogenesis. The study of tumour interactions with the immune system has also attracted 

an abundance of mathematical models. An overview of this field of research has been 

published by Adam and Bellomo (1997). 

 

      In general, the mathematical model of tumour describes the evolution of tumour 

growth from the early stage (microscopic level) toward later stage (macroscopic level). 

The model becomes more complex when it involves the interaction between tumour cell 

and their surrounding. A system of nonlinear partial differential equation has been 

established for describing this interaction. Since this involving many parameters like 

concentration of cell, tumour density etc., the solution of nonlinear partial differential 
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equations are mainly numerical like finite difference method. None of it was being solved 

analytically. In this study, the mathematical models of tumour from avascular until 

metastasis stage are solved via Adomian Decomposition Method (ADM) and Homotopy 

Perturbation Method (HPM). These methods produced approximate analytical solution in 

a series form. From our knowledge, this is the first time that ADM and HPM were being 

used in solving tumours model. 

 

 

 

 

 

 

  


